Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 162: 114582, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989727

RESUMO

In the present study, in vitro, in vivo, and in silico models were used to evaluate the therapeutic potential of Pulmeria alba methanolic (PAm) extract, and we identified the major phytocompound, apigetrin. Our in vitro studies revealed dose-dependent increased glucose uptake and inhibition of α-amylase (50% inhibitory concentration (IC50)= 217.19 µg/mL), antioxidant (DPPH, ferric-reducing activity of plasma (FRAP), and lipid peroxidation (LPO) [IC50 = 103.23, 58.72, and 114.16 µg/mL respectively]), and anti-inflammatory potential (stabilizes human red blood cell (HRBC) membranes, and inhibits proteinase and protein denaturation [IC50 = 143.73, 131.63, and 198.57 µg/mL]) by the PAm extract. In an in vivo model, PAm treatment reversed hyperglycemia and attenuated insulin deficiency in rats with streptozotocin (STZ)-induced diabetes. A post-treatment tissue analysis revealed that PAm attenuated neuronal oxidative stress, neuronal inflammation, and neuro-cognitive deficiencies. This was evidenced by increased levels of antioxidants enzymes (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), and decreased malondialdehyde (MDA), proinflammatory markers (cyclooxygenase 2 (COX2), nuclear factor (NF)-κB and nitric oxide (NOx)), and acetylcholinesterase (AChE) activities in the brain of PAm-treated rats compared to the STZ-induced diabetic controls. However, no treatment-related changes were observed in levels of neurotransmitters, including serotonin and dopamine. Furthermore, STZ-induced dyslipidemia and alterations in serum biochemical markers of hepatorenal dysfunction were also reversed by PAm treatment. Extract characterization identified apigetrin (retention time: 21,227 s, 30.48%, m/z: 433.15) as the major bioactive compound in the PAm extract. Consequently, we provide in silico insights into the potential of apigetrin to target AChE/COX-2/NOX/NF-κB Altogether the present study provides preclinical evidence of the therapeutic potential of the apigetrin-enriched PAm extract for treating oxidative stress and neuro-inflammation associated with diabetes.


Assuntos
Diabetes Mellitus Experimental , Ratos , Humanos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Acetilcolinesterase/metabolismo , Ratos Wistar , Glicemia/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Inflamação/tratamento farmacológico , Estreptozocina/uso terapêutico , Extratos Vegetais/farmacologia
2.
Sci Rep ; 10(1): 13750, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792639

RESUMO

Glioblastoma (GBM) is one of the most aggressive types of cancer, which begins within the brain. It is the most invasive type of glioma developed from astrocytes. Until today, Temozolomide (TMZ) is the only standard chemotherapy for patients with GBM. Even though chemotherapy extends the survival of patients, there are many undesirable side effects, and most cases show resistance to TMZ. FL3 is a synthetic flavagline which displays potent anticancer activities, and is known to inhibit cell proliferation, by provoking cell cycle arrest, and leads to apoptosis in a lot of cancer cell lines. However, the effect of FL3 in glioblastoma cancer cells has not yet been examined. Hypoxia is a major problem for patients with GBM, resulting in tumor resistance and aggressiveness. In this study, we explore the effect of FL3 in glioblastoma cells under normoxia and hypoxia conditions. Our results clearly indicate that this synthetic flavagline inhibits cell proliferation and induced senescence in glioblastoma cells cultured under both conditions. In addition, FL3 treatment had no effect on human brain astrocytes. These findings support the notion that the FL3 molecule could be used in combination with other chemotherapeutic agents or other therapies in glioblastoma treatments.


Assuntos
Antineoplásicos/farmacologia , Astrócitos/efeitos dos fármacos , Benzofuranos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Senescência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Aglaia/química , Anaerobiose/fisiologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Preparações de Plantas/farmacologia
3.
Front Nutr ; 4: 60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255711

RESUMO

The effect of cooking on starch hydrolysis, polyphenol contents, and in vitro α-amylase inhibitory properties of mushrooms (two varieties Russula virescens and Auricularia auricula-judae), sweet potato (Ipomea batatas), and potato (Solanum tuberosum) was investigated. The total, resistant, and digestible starch contents of the raw and cooked food samples (FS) ranged from 6.4 to 64.9; 0 to 10.1; and 6.4 to 62.7 g/100 g, respectively, while their percentages of starch digestibility (DS values expressed as percentages of total starch hydrolyzed) ranged from 45.99 to 100. Raw and boiled unpeeled potato, raw and boiled peeled potato, raw A. auricula-judae, and sweet potato showed mild to high α-amylase inhibition (over a range of concentration of 10-50 mg/mL), which was lower than that of acarbose (that had 69% inhibition of α-amylase over a range of concentration of 2-10 mg/mL), unlike raw R. virescens, boiled A. auricula-judae, and boiled sweet potatoes that activated α-amylase and boiled R. virescens that gave 0% inhibition. The FS contained flavonoids and phenols in addition. The significant negative correlation (r = -0.55; P = 0.05) between the α-amylase inhibitory properties of the raw and cooked FS versus their SD indicates that the α-amylase inhibitors in these FS also influenced the digestibility of their starches. In addition, the significant positive correlation between the α-amylase inhibitory properties of the raw and cooked FS versus their resistant starch (RS) (r = 0.59; P = 0.01) contents indicates that the RS constituents of these FS contributed to their α-amylase inhibitory properties. The study showed the usefulness of boiled unpeeled potato, boiled potato peeled, and raw sweet potato as functional foods for people with type 2 diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...